Study of Emotion Recognition Based on Surface Electromyography and Improved Least Squares Support Vector Machine
نویسندگان
چکیده
In order to improve human-computer interaction (HCI), computers need to recognize and respond properly to their user’s emotional state. This paper introduces emotional pattern recognition method of Least Squares Support Vector Machine (LS_SVM). The experiment introduces wavelet transform to analyze the Surface Electromyography (EMG) signal, and extracts maximum and minimum of the wavelet coefficients in every level. Then we construct the coefficients as eigenvectors and input them into improved Least Squares Support Vector Machines. The result of experiment shows that recognition rate of four emotional signals (joy, anger, sadness and pleasure) are all more than 80%. The results of experiment also show that the wavelet coefficients as the eigenvector can be effective characterization of EMG. The experimental results demonstrate that compared with classical L_M BP neural network and RBF neural network, LS_SVM has a better recognition rate for emotional pattern recognition.
منابع مشابه
An Emotion Recognition Approach based on Wavelet Transform and Second-Order Difference Plot of ECG
Emotion, as a psychophysiological state, plays an important role in human communications and daily life. Emotion studies related to the physiological signals are recently the subject of many researches. In This study a hybrid feature based approach was proposed to examine affective states. To this effect, Electrocardiogram (ECG) signals of 47 students were recorded using pictorial emotion elici...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملECT and LS-SVM Based Void Fraction Measurement of Oil-Gas Two-Phase Flow
A method based on Electrical Capacitance Tomography (ECT) and an improved Least Squares Support Vector Machine (LS-SVM) is proposed for void fraction measurement of oil-gas two-phase flow. In the modeling stage, to solve the two problems in LS-SVM, pruning skills are employed to make LS-SVM sparse and robust; then the Real-Coded Genetic Algorithm is introduced to solve the difficult problem...
متن کاملOPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE
A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...
متن کاملEmotion Recognition of EMG Based on Improved L-M BP Neural Network and SVM
This paper compares the emotional pattern recognition method between standard BP neural network classifier and BP neural network classifier improved by the L-M algorithm. Then we compare the method Support Vector Machine (SVM) to them. Experiment analyzes wavelet transform of surface Electromyography (EMG) to extract the maximum and minimum wavelet coefficients of multi-scale firstly. We then i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCP
دوره 6 شماره
صفحات -
تاریخ انتشار 2011